Dans cet article et les 2 suivants je vous propose de nous intéresser aux "Girder forks", aux fourches dites "à parallélogramme", ou assimilées...ce qui sous-entend que le terme est parfois utilisé de manière inappropriée. Il s'agit en effet parfois d'un "quadrilatère quelconque" et non d'un véritable parallélogramme. Les conséquences sont très importantes sur la cinématique de la fourche et le comportement de la moto.


Définissons quelques paramètres géométriques de départ pour notre moto d'étude :
- empattement 1600 mm (OK c'est long !)
- roue avant de diamètre 600 mm
- roue arrière de diamètre 630 mm
- angle de chasse de 28°
- chasse au sol (trainée) de 130 mm au départ
On souhaite un débattement avant de 120 mm et le rapport d'enfoncement entre la roue et l'amortisseur soit quasi constant à une valeur de 2. Au départ l'amortisseur fera 300 mm de long. A mi-course, pour 60 mm de déplacement de l'axe de roue avant, l'amortisseur sera comprimé de 30 mm (donc longueur = 270 mm) et en fin de course, pour 120 mm à l'axe de roue nous aurons un amortisseur comprimé de 60 mm (l = 240 mm).
Ces choix seront conservés pour toute l'étude.
Commençons par une moto équipée d'un "vrai" parallélogramme.
Un rappel mathématique s'impose.
Observons la vue latérale de la moto et le détail des éléments articulés :
Vue latérale droite et repérage des groupes cinématiques

(En conséquence, les côtés [MK] et [NL] sont également parallèles et de même longueur).
Voici le mouvement de la fourche 2 par rapport au châssis 1 :
Comme nous avons un vrai parallélogramme, le mouvement 2/1 est une translation circulaire.
Dans une translation, il n'y a aucun pivotement. La fourche se déplace parallèlement à elle-même (cette expression n'est sans doute pas très claire alors regardez les images qui bougent !).
Il n'est donc pas possible avec ce système d'obtenir une trajectoire de l'axe de roue comparable à celle obtenue avec une fourche télescopique (un segment de droite).
L'observation du mouvement de la fourche 2 par rapport au châssis 1 est intéressant mais dans la réalité, n'oublions pas que la moto est posée sur ses roues (sauf figure acrobatique !). Il faut donc regarder comment le châssis se déplace par rapport au sol lors des mouvements de suspension. Dans toute l'étude la suspension arrière est figée. Seule la suspension avant travaille (et vous, pour lire cette prose).
Tracé des trajectoires par rapport au châssis :

On pourra relever la diminution de la valeur de chasse au sol. La valeur finale de 95 mm a été choisie...nous verrons comment....
On relève également que la valeur de déport (distance entre le centre de roue et l'axe de colonne de direction) n'est pas constante, contrairement à une fourche télescopique conventionnelle.
2 commentaires:
excellent article sur les Gilder forks ! on lit tellement de textes erronés ou incomplets!
bravo merci
Merci ! J'apprécie le compliment !
Enregistrer un commentaire